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Chapter 1

INTRODUCTION

The evaluation of one or more specific definite integrals often
constitutes a crucial segment of a scientific or engineering research
project. As technical research becomes more complex, the integrals
encountared tend to be correspondingly more complicated, and so more
resistant to treatment by standard mathematical methods. In particular,
scientists and engineers are increasingly being confronted with the task
of evaluating multi-dimensional integrals, an enterprise which often
overtaxes even highly refined, computer-oriented numerical quadrature
techniques,

In the late 1940's a novel technique for numerically evaluating
integrals was suggested by E. Fermi, J. von Neumann and S. Ulam. This
technique, which was termed "Monte Carlo" because of its reliance upon
random numbers, did not win immediate widespread acceptance in the scienti-
fic community. Mos. scientists apparently just ignored Monte Carlo,
probably because it seemed rather foolish to suppose that one could gain
useful knowledge about a well-defined and perfectly deterministic inte-
gral by playing some contrived game of chance. And of those workers
who took the trouble to inform themselves more fully on the subject,
many found that Monte Carlo, as it was understood and applied in the
1950's, simply was not as efficient for their particular problems as were

the more conventional numerical methods.




To be sure, the fonte Carlo method has its limitations, and it is
by no means an appropriate tool for many problems. However, owing to an
increased understanding of and improvement in Monte Carlo techniques, as
well as the development of faster digital computers, the class of integrals
which are row amenable to Monte Carlo is fairly large, and includes many
of the unwieldy multi-dimensional integrals which scientists and engineers
often encounter in their research. For this reason the Monte Carlo approach
undoubhtedly deserves a wider recognition in the scientific and engineering
community than it presently has.

There exists a fairly extensive body of literature on Monte Carlo.
Currently the most comprehensive work is a book by Hammersley and Handscomb
(Ref. 1); a less ambitious but somewhat more readable work is an article
by Fluendy {Ref. 2). However, in this w.iter's opinion the "standard work"
on Monte Carlo has yet to be written. This is probably because all of its
variations and possibiiities have not yet been brought into a completely
understood and totally unified picture by any one practioner of the art.

In addition, it is usually easier to do Monte Carlo in some specific
instance than it is to write (or read) about it in general terms. Un-
fortunately though, it is also easy to do Monte Carlo inefficiently—or
worse still, incorrectly—so a good understanding of the generalities
is rather essential.

This writer has used Monte Carlo as a computational tool in two areas
of physics, namely, elementary particle physics (Ref. 3) and classical

kinetic theory (Ref. 4)., This limited experience has by no means rendered
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the author an expert in all facets of Monte Carlo; however, it has sug-
gested a pedagogical approach to the subject which Is perhaps more trans-
parent to scientists than are the standard presentations, which usually
tend to be rather deeply couched in the technical language of statistics,
The aim of this monograph, therefore, is not to prcvide a definitive

and comprehensive treatment of all aspects of Monte Carlo; rather, its
purpose is to present the basic principles of the conventional Monte Carle
method for estimating integrals, in a manner that will convey an "in-
tuitive feeling” for how and why the method works. An intuitive rapport
with the Monte Carlo approach is important, because this enables one to
more easily ldencify which features of a given integral will give rise

to difficulties, as well as which features can be exploited for a gain

in computing efficlency. More often than not, this kind of insight is
what spells the difference between success and failure in obtaining a
sufficiently accurate numerical estimate for a given integral.

From the viewpoint of a scientist, the basic idea behind Monte Carlo
can probably be best explained through a familiar exauwple from statistical
mechanics: Suppose we have a gas composed of very many molecules of mass
m in thermal equilibrium at absolute temperature T, If f(v) is any function
of the molecular speed v (e.g., £{v} could be the molecular xinetic energy
mv?/2, or the molecular speed v itself), then the average (f) of f(v) for

these gas molecules may be defined as

N
) - ‘1ﬁ izl flv), W21 (1.1)
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, are the speeds of N randomly chosen molecules.

where vi, va2, .« « ., vy

Now, we can evaluate (f) without actually polling N randomly selected
molecules by making use of the Maxwell-Boltzumann Law. According to
thig law, the probability that any molecule will have a speed between

v and vidv is
P(V)dv = {2/m)3/? 4mviexp(~ov?)dv (1.2)

where o =m/2kT, k being Boltzmann's constant. It follows that the contri-
bution to the sum on the right of (1.1) coming from molecules with speeds
between v and v+dv will be NP(v)dvxf(v). Summing (integrating) over all

dv-intervals thus gives the quantity Eif(vi), and (1.1) yields
[
{£) = f f(v)P(v)dv (1.3)
o

The point here is that, in statistical mechanics, we evaluate averages
of the kind on the right side of (1.1) by actually computing definite
integrals of the kind on the right side of (1.3).

The basic idea behind Monte Carlo is simply to turn this procedure
around. Thus, suppose that for some unrelated reason we wanted to evaluate
the integral on the right side of (1.3), where P(v) is given by (1.2)
with a specific numerical value for a, and where f(v) is some given
function which is so complicated that we are unable to carry out the

integration analytically. Now, if we could somehow obtain a set of
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numbers vi, Vi, «.. , A that mimic the speeds of N randomly chosen gas

molecules in thermal equilibrium (with m and T values appropriate to the
given value of a), then we could evidently evaluate the integral in
question simply by averaging f(v) over these N vi—values. This would in

fact constitute a "Monte Carlo evaluation' of the integral: In Monte

Carlo, we evaluate definitz integrals of the kind on the right side of

(1.3) by actually computing averages of the kind on the right side of
(1.1).

From the foregoing rough description of the Monte Carlo approach,
several questions naturally arise. The first and most obvious is, can

we obtain the required v, -values without actually measuring the speeds of

i
randomly selected gas molecules? More generally, can we obtain vi~values
appropriate to P functions different from the one given in (1.2)? These
matters will be addressed in Chapter 2, where we discuss in some detaill
how sets of random points are specified and how they can be constructed.

The second question concerns the accuracy of a Monte Carlo calculation.
If the values vy, v2, «vv VN are the speeds of N randomly chosen gas
molecules, then we surely cannot expect (1.1) to yleld a unique result,
In fact, (1.1) - (1.3) are strictly valid only in the limit N » =, We
therefore need to know what sort of uncertainty in our result will be
occasioned by calculating (1.1) with N finite. This question will be
discussed in detail in Chapter 3, where we shall develop the Monte Carlo

method for estimating definite integrals in a much more careful way than

we did above.




Finally, there is the following question: Once the uncertainty in
a given Monte Carlo calculation has been determined, is there any way
of modifying the procedure so as to reduce this uncertainty? One intu-
itively obvious way of doing this would be to simply increase N, but
clearly the time avallaole for computation will impose an effective upper
limit on the size of N. It turns out that, depending on the specifics
of the integral in question, one usually can find ways of reducing the un-
certainty without significantly increasing the computing time. 1In Chapter 4
we shoil describe some of these so-called 'variance reducing” techniques.

We mentioned that this report will concentrate on the "conventional"
Monte Carlo method of evaluating integrals. As implied, there is a some-
what unconventional Monte Carlo method; this alternate approach makes use
of the mathematical concept of a "Markov chain” or a "Markovian random
walk", and has met with considerable success in certain areas of statistical
mechanics. It is not our purpose in this report to discuss in detail the
Markov chain Monte Carlo method for calculating multi-dimensional integrals;
however, in order to give the reader scme idea of what is involved, as well
as some guidance to the literature, we have included a brief appendix on
this subject (Appendix I) at the end of this report,

We shall try in this report to avoid as much as possible the technical

jargon of statistics, but we shall nevertheless attempt to maintain a

reasonable level of precision and rigor. We assume at the outset that the
reader 1is acquainted with che common {(albeir not universal) view of

] "probability" as the ratio of the number of trials with a favorable outcome
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to the total number of trials, taken in the limit of infinitely many

trials. From this notion one easily deduces the additior and multipli-

cation laws for probabilities:

*Addition Law: If p; and p2 are the probabilities for the occurrence

of two mutually exclusive events 1 and 2, then the probability for the

e o AR, S AT I TN
Ll

occurrence of either 1 or 2 in any one trial is p;+pz.

eMultiplication Law: If p; is the prcbability for the occurrence of

event 1, and p,; the probability for the occurrence of event 2 when
event 1 occurred on the previous trial, then the probability for the
occurrence of first 1 and then 2 in any two successive trials is

P1*P21.

These and other primitive notions about probabilities will be invoked

frequently throughout our discussion of the Monte Carlo procedure.




Chapter 2

SETS OF RANDOM POINTS

2-1. Specifying Sets of Random Numbers

All Monte Carlo applications involve the use of at least one set

of random numbers {xi} distributed according to some predetermined

probability density function P(x). By these terms we mean an inexhaust-

ible set of real numbers from which we may "draw" s2quential elements

X1, X2, X35 ... such that

i

P(x)dx = probability that any X, will lie between

X and x+dx. 2.1)

The numbers in {xi} are considered "random'" because each draw can produce
any real number x, provided P(x)#0, and it is not possible to say before-
hand what the drawn number will be. However, to say that the numbers

in (xi} are "random" is ot to say that they are "unbiased". Indeed, the

numbers are quite definitely biased in the sense that, in the limit of

infinitely many draws, a normalized fiequency histogram of the xi's

E will coincide with the curve P(x)-versus-x.

A set of random numbers {xi} is specified as completely as is possible
t by its probability demsity function P(x). However, it is often convenient
to work with its probability distribution function F(x), which is defined

in terms of P(x) by

X
g F(x) zfm')dx' (2.2)
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In light of (2.1), (2.2) says that F(x) is the "sum" of the probabilities
for Xy to fall inside each infinitesimal interval between -» and X;
by the addition law of probabilities, F(x) may thus be interpreted as the

probability that X, will be less than x.

Since Xy will surely be less than =, we have the following normaliza-

tion property:

];(x')dx‘

-iXr

F(») =1 (2.3)

Another property of P(x), which derives directly from its definition

(2.1), is that it never be negative:

P(x) 2 0 for all x (2.4)

It follows from (2.2)~(2.4) that the distribution function F(x) rises
from the value 0 at x=-® to the value 1 at x=+® in a non-decreasing way.
Indeed, any non-negative, single-valued function of x which bounds
a unit area with the x-axis can serve as a probability density function,
defining a set of random numbers., Similarly, any differentiable funztion
of x which rises from the value 0 at x=-x to the value 1 at x=+» with-
out ever decreasing can serve as a probability distribution function,
defining a set of random numbers.
The distinctiou between a probability density function and a proba-

bility distribution function is quite important in Monte Carlo work.t

+

“The function P{v) in (1.2), or its closely related Cartesian counterpart,
is usually referred to as the "Maxwell-Boltzmann distribution function';
this is a rather unfortunate designation since it is obviously a probability

density function and not a probability distribution function.



F(x) is the integral curve of P(x), and conversely P(x) is the deriva-
tive curve of F(x). A plot of P(x) and F(x) for a hypothetical set of
random numbers {xi} is shown in Fig. 1, where we have tried to illustrate
the properties and relationships developed above., If P(x) is zero below
x=a and above x=b, then F(x) is zero below x=a and unity above x=b. The
total area under the P(x)} curve is unity, while the area under the P(x)
curve between x and x+dx is numerically equal to the probability that a
number drawn from {xi} will lie between x and x+dx. The ordinate at x
on the F(x) plot is the probability that a number drawn from {xi} will
be less than x. Regions on the x-axis of high likelihood are distinguished
by high P(x)-values and steeply rising F{(x)-vzlues; regions of low like-
lihood are distinguished by low P{x)-values and nearly constant F(x)-values.
Since F(x) is a probability, it is always a pure number between 0 and 1.
P(x) is not a probability; however, P(x)dx is, so P(x) always has dimensions
of 1/x.

F(x) is sometimes referred to as the "cumulative distribution function”.
We shall hereafter refer to P(x) and F(x) more simply as the "density
function' and "distribution function" respectively.

Suppose a‘given set of random numbers {xi} with density function
P1(x) is .runsformed into a new set of random numbers {yi} by applying to

each element of {xi} the transformation

y = f(x) (2,5a)

What will be the density function P2(y) of the new set {yi}? If, as is indicated

10
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‘ P(x)

- X

a X xtdx b

1/2

- dF(x)=F{x)dx

P X

P ..

0 J\

a X  xHdx b

FIGURE 1. Illustrating the relationship between the

density function P(x) and the distribution
function F(x) for a hypothetical set

of random numbers {xi}.

11




“

y=f (x)

y+dy

/”/, x’ \'x+dx
d

FIGURE 2. Transforming a set of random numbers
{xi} into a set of random numbers

{yi} through a function y=f(x).

12



e

LRSI e

ST

o ns g

43
i
A
3
#
]
G
&
%
hiS

in Fig. 2. the interval (y,y+dy) is the image of the interval (x,x+dx)

under (2.5a), so that

dy = l%‘dx = |£' (0] dx (2.5b)

then clearly the probability for finding yy ingide (y,yHdy) is the same

as the probability for finding Xy inside (x,x+dx):

P2(y)dy = Pi(x)dx ' (2.6)
Isserting (2.5b) we therefore conclude that
P2(y) = Pr(x)/|E" ()] (2.7)

where x on the right side of (2.7) is now to be regarded as a function of

y through the inverse of (2.5a): x=f~'(v). The important result (2.7)

shows that the density of random points Yy around y=f(x) will be greater
than, equal to, or less than the density of random points L9 around x
accordingly as the local slope [dy/dx]of the transformation curve is less
than, equal to, or greater than unity; these features can be appreclated
geometrically from Fig. 2. If the inverse function x=f "' (y) is multivalued,
so that a given dy-interval is populated from several dx intervals, then

the right sides of (2.6) and {2.7) will evidently have to be summed over

all contributing intervals.

13



2-2. The Set {r }

Of special importance in Monte Carle work is the set of random

numbers distributed uniformly over the unit interval, the elements

of which we shall always denote by ri. More precisely, the set {ri} is

defined by the density function

0, for r<o0
P(r) = {1, for 0<r<l (2.8a)
0, for r>1

or the corresponding distribution function [cf. (2.2)]

0, for r<0
F(r) = {r, for O<r<l (2.8b)
1, for r>1

Thus, the set {ri} is distinguished by the facts that: (1) the probability

for a randomly drawn r, to lie in any dr-interval between 0 and 1 is

i
equal to dr; and (ii) the probability for a randomly drawn Ty to be less
than a given number r between 0 and 1 1s equal to r.

The set {ri} is important in Monte Carlo work for two reasons: First,

there exist many short computer subroutines which are capable of rapidly

generating elements of this set (or more precisely, elements of some

set which simulates {ri} closely enough for most practical purposes);
and second, it is possible to construct from the elements of the set
{ri} the elements of a set {xi) distributed according to any prescribed
density function P(x). In this report we shall not delve into the first

polnt in any detail., The reason for this omission is that the writing

14
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of computer codes to generate mock elements of the set {ri}-so—called
"uniform random number generators—is a complicated, fzst-changing art
which is best entrusted to experts in statistics and the theory of
numbers. A nice introduction to this subject containing many references
to the literature is the short article by Chambers (Ref. 5); more de-
tailed treatments may be found in Chapter 3 of Hammersley and Handscomb
(Ref. 1) and Vol. 2 of Knuth (Ref. 6). We shall content ourselves here
with giving only a brief glimpse of the general ideas involved in genera-
ting uniformly distributed “pseudorandom” numbers on a digital computer,
Most uniform random number generators currently in use are based
upon the so-called "multiplicative congruential method”. 1In Zts simplest
form, this method takes a starting integer No and generates a sequence of

integers N;, N2, ..., by means of the recursion relation

Ni = CNi—l (modulo M)

where C and M are predetermined (and usually very large) in*tegers. This

i
is divided by M. Obviously, each Ni will lie between O and M, so the

relation means that N, is set equal to the remainder obtained when CNiul

elements

r, = Ni/M
will lie between O and 1. It turns out that, provided sufficient care
is taken {n choosing the numbers No‘ C and M, the set of numbers {ri}

obtained from the above algorithm approximates a uniform distribution

15
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of random numbers in the unit interval surprisingly well. What un~

desirable correlations the method has (and it certainly does have some)

can be greatly diminished by incorporating a few twists and turns into
{ the above procedure. However, almost all uniform random number generating
subroutines generally available for digital computers have in common
with the procedure just described the feature that each element T
is calculated in an coperationally simple way from the result of the
r1 calculation, and also the feature that r; is determined by a
starter number No whose value can be changed at will by the user to
generate different, independent “chains" of random numbers. Usually it
1s most economical to set up a uniform random number generating sub-
routine so that, after an "initializing call' which sets some value for
the starter number No’ the subroutine will calculate and output one ran-
dom number (the next number of the chain) each time it is called by
the main Monte Carlo program.

The author's recent Monte Carlo work has made use of a short
Fortran subroutine designed especially for the Univac 1108 computer
by Marsaglia and Bray (Ref., 7); their method essentially tries to over~-
come some of the correlations present in congruential generators by
mixing several such generators together. We refer the reader to their

article and to the previously mentioned works (Refs. 5, 1 and 6) for

further details on the computer-generation of pseudorandom numbers from
a uniform distribution in the unit interval. 1In the sequel we shall

simply assume that we have easy computer access to a set of numbers

16
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which effectively mimics the set {ri}; in practice, this is usually

the case.

2-3. The Inversion and Rejection Generating Methods

We turn now to the important problem of how to construct, from a
given set of random numbers {ri} distributed uniformly on the unit
interval, another set fxi} distributed according to any prescribed den-
sity function P(x). There are two primary methods for accomplishing

this, which we shall refer to as the inversion method and the rejection

method. We consider first the

Inversion Method: PNetermine the distribution functior F(x) corres-

ponding to the given density function P{x) [cf. (2.2)]. Then, for
each element T, from the given set {ri}, choose X, by solving the
equation F(xi)tri; i.e.,, construct the elements of the set {xi} from

the elements of the set fri} according to the formula

X, = F“I(ri) (2.9)
where F~' is the inverse of the distribution function.

Trat the set {xi} constructed according to the foregoing procedure
actuallyv bas P(x) as its density function follows from the transformation
theoren »raved at the end of Sec. 2-1 [ef. (2.5)-(2.7)]. Thus, if the
sel ir with density function Pi(r) is transformed into a new set (xi}
by the t-ansformation x=F~'(r), then by (2.7) the density function

P;(x) of the new sel is

17
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P2(x) = P (0)/|F ()]

But the density function of the set {ri} is just Py(r)=1 (0<r<i);
furthermore, since (dx/dr)=1/(dr/dx), then (F~')'=1/(F'). Thus, the

density function of the constructed set {xi} is

Pa(x) = 1/[1/F'(x}] = F'(x)

i

P(x)

where the concluding equality follows from the definition (2.2).

To get some physical insight into the way the inversion method
actua’ly works, consider the hypothetical plot of r=F(x)-versus-x, shown
in Fig. 3. Essentially, tte inversion method lays out the elements of
the glven set {ri} along the r-axis, and then projects each ri*element
onto the x-axis through the curve r=F(x). The projection is always
well-defined since F(x) rises from 0 at x=—» to 1 at x=+~ in a non-
decreasing way. If Ar; and Ar; are two equal-size intervals in 0<r<i,

then they will each contain the same number of elements of the set {ri}.

at least to within random statistical fluctuaticns, since the numbers in
{ri} are uniformly distributed over the unit interval. By construction,
then, the respective image intervals Ax; and fx; will also contain the
same number of elements of the set {xi}, again to within random sta-
tistical fluctuations. Now if, as is the case in Fig. 3, the slope

of the curve F(x)-versus-x is greater in Ax, than in Axy, then Ax;

will be proportionately smaller than Ax,, implying that Axz will have

a proportionately greater density of points than Ax;. But the local
slope of the curve F(x)-versus-x is just the local value of P(x), as is

seen from the definition (2.2). Thus, we see that the density of

i8
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FIGURE 3. Illustrating the principle of

the inversion generating method.
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xi-points produced in a given region by the inversion generating method
is proportional to the value of the function P(x) in that region, which
is just as it should be.

A gimple but often used application of the inversion method is the
generation of a set of random numbers {xi} distributed uniformly over the
interval agx¢<b. The density function here is evidently

1/(b=a), asxgb
P(x) = (2.10a)
0 , otherwise

Using (2.2) we find that the distribution function in the interval

ag<x¢<b is
F(x) = (x~a)/(b-a) (2.10b)

The inversion of F(x) here is easilyv accomplished, and the construction

rule {2.9) takes the entirely plausitle form

x, = a+ ri(b—a) : (2.10c¢)

i

As a second general procedure for generating random numbers

{x,} according to a prescribed density function P(x), we consider the

Rejection Method: For this method it {s required that the given

density function P(x) vanish everywhere ocutside some finite interval

a¢x¢b, and be bounded by some finite number B inside that interval.
Furthermore, in addition to the set of random numbers {ri} dis-

tributed uniformly over the unit interval, we shall also need an

20




probable fraction of the xi-values which will be accepted as x

independent set of random numbers {xi} distributed uniformly over the
interval asx<b [see (2.10)]. The generating procedure is then as
follows. Draw a pair of random numbers (xi, ri) from the given sets,

and take xi to be a member of the set {xi} if

P(x;)/B 2 r, (2.11)

If (2.11) is not satisfied, reject the pair (xi, ri) and keep drawing

new pairs uyntil the inequality is satisfied.

The proof that the set of xi-values which pass the “acceptance cri-

terion” (2.11) i~ indeed distributed according to the density function

P(x} is somewhat more complicated than the proot for the inversion method,
and is presented in Appendix A. We merely point out here that the ac~-
ceptance criterion (2.11) is evidently statistically favorable to xi-valnes
for which P(x) is relatively large, and is statistically unfavorable to
x;-values for which P(x) is relatively small., We should z2lso note that,
because 1 ratio is taken in (2.11), P(x) and its upper bound B need be
known only up to an overall constant factor; i.e., the "normalization
constant” need not be known when using the rejectivn method. In any case,

one finds that the efficiency of this generating process, or the

i-values,

is given by [see Appendix A]

b
f P(x)dx
a

F= m (2.12)
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Geometrically, E can be interpreted as the ratioc of the area under the
curve P(x) to the area under the rectaagle of height B and width (b-a)
which encloses the P(x) curve. Clearly, then, it is desirable to choose
for B the smallest upper bound on P(x), and for (a,b) the smallest
interval outside of whichk P(x) vanishes identically.

In our derivation of the rejection method in Appendix A, it will
be seen that this method can actually be formulated in a slightly mbre
general way: 1If the initial set of random numbers {x{} is distributed
over a<x<b according to some density function P(x) [not necessarily the
uniform function in (2.10a)], then the density function of the set {xi}
which is constructed according to the selection process (2.11) will be
CP(x)P(x), C being the appropriate normalizing constant. This way of
generating according to a product density function is usually less ef-
ficient than an "all-at-once' approach, but in some situatione it may
prove to be more convenient.

To compare in a few words the inversion and rejection methods for
generating random numbers {xi} according to a prescribed density function
P(x), we may say that the inversion method constructs the set {xi}‘by
distorting a uniformly cdistributed set through the distribution functionm,
while the rejection method constructs the set {xi} by making selections
from a uniformly distributed set randomly biased according to the
density function. 1In any given situation, speed and convenience will
usually select one method over the other. The inversion method 1is
100% efficient in its use of random numbers, but it requires calcu-

lating and inverting the distribution function, a task which is sometimes
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quite difficult. The rejection method does not require a knowledge of
the distribution function nor even the absolutely normalized density
function, but it does require us to know a reasonable upper bound on
the density function; morecver, if the shape of the curve P(x)-versus=~x
is such that the area of the smallest box enclosing this curve is very
much larger than the area under this curve, then the rejection method
will be very inefficient,

One other method for generating a set of random numbers will be
described in Sec. 2-8, after we have examined the problem of generating

random points in more than one dimension.

2.4. Specifying Sets of Random Points

We shall now see how the foregoing ideas concerning the specifica-
tion and construction of sets of random points in one dimension can be
generalized to any number of dimensions. For concreteness, and with no
real loss of generality, we shall confine our discussion mainly to the
three-dimensional case; here we denote a general point by §*(x,y,z) where
X, ¥ and z are ordinary real variables. When we speak of a set of

random points {xi}E{(xi,yi,zi)} distributed according to the probability

density function P(X)ZP(x,y,z), we mean an inexhaustible set of triplets

of real numbers from which we may "draw" sequential elements (X1,¥1,21),

(x2,¥2,22}, ..., such that
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P(x,y,z)dxdydz

it

P(R)4%

e L T

1

probability that Xy will lie between x and
x+Hdx, and 74 will lie between y and yHdy, and

zy will lie between z and zHdz. (2.13)

A set of random points {(xi,yi,zi)} is completely characterized by
its density function P(x,y,z). However, it is often convenient to intro-
duce a number of "lesser" density functions which characterize only
certain particular features of the distribution. For example, we may

define the contracted density functions P(x,y) and P(x) by

P(x,y)dxdy T probability that Xy will lie between x and .
x+dx, and Yy will lie between y and yidy,

regardless of where 2 lies. (2.14a)
and

P(x)dx = probability that x, will lie between x and xHdx,

i
regardless of where Yy and z, lie. (2.14b)

In a similar way we may also define the contracted density functions

P(y,z), P(x,z), P(y) and P(z). Of course, the functional forms of these

contracted density functions will in general all be different; e.g.,

P(y,z) is generally not the same function of y and z as P(x,y) is of
x and y, and P(z) is generally not the same function of z as P(x) is
of x. Nevertheless, we shall avoid a cumbersome subscripting of these

P-functions, and trust thau our meaning will always be clear from context.
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It is easy to obtain expressions for the contracted density functions
in terms of the full density function P(x,y,z), simply by invoking the
addition theorem for probabilities. Thus, the probability in (2.1l4a) is
obtained simply by summing (integrating) the probability in (2.13) over
all dz-intervals, and the probability in (2.14b) is obtained by further

summing over all dy-intervals:
P(Xy)’) = sz’P(X;YsZ') (2.15a)
P(x) = Tdy'sz'P(x,y',z‘) (2.15b)
i -

0f course, if we sum (2.13) over all xyz-space, we should get unity

(certainty), just as in (2.3):

L] o0 o
fax'[dy' [dz'P(x',y',2") = 1 (2.16)
-0 - -

In addition to the contracted density functions defined in (2.14),

we will also make use of various conditional density functions, which

are defined as follows:

P(y,z|x)dydz = probability that yg will le
between y and y+Hdy, and zy will
lie between z and ztdz, given

that X=X, (2.17a)

P(y|x)dy = probability that ¥y will lie between

y and y+dy, given that x,=x, regardless of

i
where z; lies. (2,17b)




P(z|x,y)dz = probability that z, will lie between z and

z+dz, given that x =x and ¥ =ye (2.17¢)

i

We read P(y,z|x) as "P of y and z conditioned on x", P(y|x) as "P of

y conditioned on x", and P(z{x,y) as "P of z conditioned on x and y", We
may obviously introduce sixz more conditional density functions with
different arrangements of the variables with respect to the vertical
slash — e.g., P(x,z|y), P(x|y), etc. However, it should be clearly
understood that all these conditional density functions are generally

different functional forms—e.g., P(x‘y) is not the same function of

x and y as P(xlz) is of x and z, etc.

As with the contracted density functions in (2.14), the conditional
density functions in (2.17) are completely determined by the form of
the full density function P(x,y,z). We mav derive the expressions for
the conditional density functions In (2.17) as follows: Applying the
multiplication theorem for probabilities to the probabilities defined

in (2.14b) and (2.17a), we see that
P(x)dx*P(y,z|x)dydz = P(x,y,z)dxdydz

Therefore,

P(y,z|x) = P(x,y,z)}/P(x)

or, with (2.15b),

fe 43
P(y,z|x) = P(x,y,z///fdy'?dz'P(x,y',z') (2.18a)
-3 -0 .

Now treating x as a fixed parameter, the addition thecrem for probabilities
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vields the following relation between the probabilities defined in

(2.17a) and (2.17b):
P(y|x)dy --idz'dyP(y,z'lx)

Inserting (2.18a) yields for P(ylx) the formula

-

P(y|x) = sz'p(x,y,z'/jdy')’dz'P(x,y;z') (2.18b)

8 A R A

Finally, again treating x as fixed and applying the multiplication

: theorem to the probabilities defined in (2.17b) and (2.17c¢), we see that
P(y]x)dy-P(z{x,y)dz = P(y,zlx)dydz

Therefore,

P(zlx,y) = P(y,z]x)/P(YiK)
or, inserting (2.18a) and (2.18b),
P(z|x,y) = P(x,y,2) c’fdz'l’(x,.y,z') (2.18¢)

It will be observed from the explicit formulae for the two-dimensional
density functions P(x,y) in (2.15a) and P(y,z|x) in (2.18a) that each

is correctly normalized:

‘de:Zdy'P(x',y') -“—‘IdyIZdz'P(y',z'lx) =1 (2.19)

Similarly, it will be observed from the explicit formulae for the one-
dimensional density functions P(x) in (2.15b), P(yix) in (2.18b) and

P(zEx,y) in (2.18c) that they are also correctly normalized:
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-iﬁx'P(x') = Tdy'?(y']x) =‘Idz'P(z'lx,y) =1 (2.20)

The formulae for these one-dimensional density functions will also be
observed to imply the following important relation [cf. (2.15b), (2.18b)

and (2.18¢)1]:
P(x,y,z) = P(x)P(y|x)P(z]|x,y) (2.21a)

The physical meaning of this equation is best seen by writing it in the

form
P(x,y,z)dxdydz = P(x)dx*P(v|x)dy-P(z|x,y)dz (2.21b)

vwhich says that the probability for simultanecusly finding X, ¥y and
z; in the respective intervals (x,x+dx), (y,yHdy) and (z,zHdz) is equal

to the product of: (i) the probability for finding Xy in (x,x+dx),

times (ii) the probability for finding Yy in (y,yHdy) given that X =X,
times (iii) the probability for finding z, in (z,z+dz) given that X =X

and =Y. In other words, (2.21b) is really a consequence of the multi-
plication theorem for probabilities. We shall refer to the act of
expressing the full three-variable density function P(x,y,2z) as a product
of three one-variable density functions as "cenditioning P(x,y,z)".
The fact that we have derived explicit formulae for the three one-

dimensional density functions in (2.21), namely

P(x) = [dy'[dz'P(x,y",2") (2.22a)
- ]
O =] [+ +]
P(y|x) =_£§z'?(x.y,z') fdy'ipz'?(x,y',z’) (2.22b)
28
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P(z{x,y) = P(x.y,zb/iidz‘?(x,y,z') (2.22¢)

proves that in principle {t is always possible (o condition P(x,y,z).
indeed, it is always possible to carry out the conditioning with respect
P(y)P(x|y)P(z]x,v) or as P(y)P(z|y)P(x!v,2), ete.

Since P(x), P(ylx) and P(z]x,y) in (2.22) are gﬂgfdimenslonal

density fuuctions, then we can introduce in analogy with (2.2) their

assoc ai ol distribution funcrions F(x), F(y|x) and F(z|x,v):
F(x) = TP(x‘)dx’ (2.23a)
y
Fly|x) = i?(y'!x)dy' (2.23b)
Z
F(z|x,y) = lp{z'Ix,y)dz' (2.23c)

Thus, for example, F(yfx) is the probability that vy will be less than
~, given that xi=x, regardless of the vilue of zi.
We mav also define o threc--ariable distribution function F(x,y,z}) by

X \ 7z
F(x,y,2) [dx']dy'jd?'v(p'.y',z') (2.24)
tvidentlv, F(x,v,z) is the probability that a randomly selected element
(xi,yi,zi} will simultaneousls oave LY yiiy and zi;z. In Monte Carle
applications, though, distribution functions with more than one argument
are not of much use, for wa recall that F(x) In (2.2) t: zhilefly of
iatorcst hecause of the role which F! plavs in tiue inversion penerating

methed. However, F(x,v,z) in (2.24) is evidently a mapping from 3-space
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into 1-space, and hence does not have an inverse. The one-variable
distribution functions in (2.23), on the other hand, do nave unique inverses,
and they will play an important role in the genmeralization of the in-
version generating method, as will be seen in the next section.

Suppose a given set of random points {(xi,yi,zi)} with density
function Py (x,y,z) is transformed into a new set of random points

{(ui,vi,wi)} by the transformation

u = U(x,y,2)
v = V{x,y,2) ( 25

w = Wix,y,2)

What will be the density function P;{u,v,w) of the set {(ui,vi,wi)}? If
dudvdw is the image of the volume element dxdydz under the transformation
(2.25), then clearly the probability for finding a point (ui‘vi’wi) inside
dudvdw is the same as the probability for finding a point (xi,yi,zi) ingide

dxdydz. Hence, in analogy with (2.6), we have
Py (u,v,w)dudvdw = P;(x,y,z)dxdydz (2.26)

The mathematical statement of the fact that the volume element dudvdw

centered at (u,v,w) is the image of the volume element dxdydz at {(x,y,z)

is simpiy Eq. (2.25) together with {cf. (2.5b)]

3(u,v,w)

dudvdw = 3(x,y,2)

dxdydz (2.27a)

-
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Here,
du dv ow
3x 3x ox
3u,v,w) _ [3u ov Jw
Say.z) - |3y 3y ay (2.270)
du v 3w
3z Jdz 9z

is the Jacobian of the transformaticen (2.23), in which it 1is understood
that the partial derivatives are all evalvated via (2.25) at the point
{x,y,z) under consideration. [Readers who are not altogether famillar with
Jacobians and their significance may find the short, heuristic discussion
given in Appendix B helpful.] With (2.27a), (2.26) implies that the

density function of the transformed set {(ui,vi,wi)} is

Pz(u,v,w) = Px(x,y,za// %%ﬁf%fgg (2.28a)
or equivalently [cf. (B. 8)]
P:{u,v,w) = Pi(x,y,z)* %{Ef%fg%! (2.28b)

where x,y and z are now to be regarded as functions of u,v and w through
the inverse of (2.25). 1If the transformation (2.25) is not strictly one-
to-one, so that a given dudvdw element is populated by several dxdydz
elements, then the right sides of (2.26)and (2.28) will have to be summed

over all contributing dxdydz elements.

2~5. The Generalized Inversion Methcd

Let us now see how the inversion method for generating random numbers

X, according to a given density function P{x) can be generalized to
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generate random triplets (xi,yi,zi) according to a given density function

P(x,y,z). As already mentioned, the noninvertibility of the distribution

function F(x,y,z) precludes its use in a formula of the type (2.9). Instead,
we proceed as follows:

Generalized Inversion Method: First, condition the giﬁen

L

density function P(x,y,z) in the form P(x)P(y|x)P(z]|x,y)

[ef. (2.21) and (2.22)], and calculate the corresponding one-
dimensional distribution functions F(x), F(ylx) and F(z}x,y)
fef. (2.23)]. Then, with r

and Ty three independent

11 T2 i
rancom numbers drawn from the set {ri}, first obtain x,
by solving (inverting)
Ty F(xi) (2.29a)
; then obtain ¥y by solving (inverting)
i
Ty = F(yi!xi) (2.29b)
where Xy is the value found in (2.29a), and fir . obtain
zg by solving (inverting)
ry = F(zi[xi,yi) (2.29¢)

vhere Xy and y, are the values found in (2.29a) and (2.29b),

respectively.
That the set {(xi,yi,zi)} constructed according to the foregoing

procedure actually has P(x,y,z) as its density function can be proved
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as follows: First note that, in picking three random numbers Tyq0 T9y

and Tay from the set of random numbers {ri} distributed uniformly

in the unit interval, we are essentially picking one random point

(rli’IZi’r3i) from the set of random points distributed uniformly over

the unit cube in T I,y
simultaneously finding 14 in (rl,r1+drl), Ty in (rz,r2+dr2), and

-gpace, That 18, since the probability for

Ty in (r3,r3+dr3) is just

P(rl)drl'P(rz)dr2°P(r3)dr3

where P(r) is given by (2.8a), th.n the probability density function

P (r or, r,) for the set of random triplets {(r )} =s

11°F24° %31

L, if Osrgl, §=1,2,3

Py (rysrpery) = PP )P(ry) =1 4 (iherwise

Now, regarding (2.29), or the inverse thereof, as a transformation which
carries each (rli,rZi,r3i)—point into a(xi,yi,zi)-point, it follows
from (2,28b) that the density function P,(x,y,z) of the set {(xi,yi,zi)}

is

JORIAD)

Py(x,y,2z) = Pi(ry,r2,ra)*

3(x,y,2)
dr; drp dry
ax  3Ix  9x
- 1+|]3E1 3rz 9r3
3y 3y 3y
ary 9ry dry
dz dz 3z
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Now, from (2.29a), r; is independent of y and z, and from (2.29b),
r2 1s independent of z. Hence, all elements of the Jacobian determinant

below the main diagonal vanish, so

ar; drp 9
Pa(x,y,2) = §£i'§§3'§§3

=}%;F(x)-§§F(yix>-§;F(zlx,y)j [by (2.29)]

=[P By %) *P(z]x,)) [by (2.23)]

= P(x,y,2) [by (2.21)]

which establishes the desired result,

From the point of view of the foregoing proof, the generalized in-
version formulae in (2.29) produce the desired results hecause these
formulae constitute a transformation from r rpri-space to xyz-space
which has the rather unique property that

3(1‘1 T2 1"3) ,
s -
«5?;f§:;7— P(x,v,2) {2.30)

From a less formal point of view, however, it is clear that the three-
dimensional inversion method i. nothing more than three successive
applications of the one-dimensional inversion method to the conditicned
form of the density function. That is, (2.29a) generates a random number
X

1 according to P(x), (2.29b) generates a random number Yy according to

P(y!xi), and (2.29c) generates a random rumber z, according to P(zlxi,yi).

i
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Thus, once one appreciates the significance of the conditioned form
of the density function in (2.21), the generalized inversion method
presented above is intuitively quite plausible.

It should be noted that one has considerable flexibility in applying
the generalized inversion method. Thus, if one or more of the distri-
bution functions F(x), F(ylx) and F(zlx,y) are intractible, one can try
to condition P(x,y,z) in another form, say, P(y)-P(z|y)-P(x|y,z), and
thus work with the different distribution functions F(y), F(zly) and
F(x|y,z). Alternatively, it will be observed that any or all of the
three successive steps in (2.29z2), (2.29b) and (2.29c) cc.1d actually be
carried out by applying the one-dimensional rejectior method. For example,
once x, has been picked according to (2.29a), one could replace (2.29b)
by an application of the one-dimensional rejection method to generate a
random point yi according to the density function P(y|xi), and then
proceed as usual with (2.29c). However, we shall regard such applica-
tions of the one-dimensional rejection method as still falling under the
scope of the "generalized inversion method", and reserve the term

"generalized rejection method" for a procedure to be described later.

2-6. Generating Uniformly Distributed Random Points

A very important application of the generalized inversion method is
the generating of random points from a uniform distribution inside some

given region Q. Suppose for now that { can be specified in the
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following way:t
Q = {(x,y,2) |ia1€x<by, a2 (x)<ysba(x), a3(x,y)<z<bs(x,y)} (2.31a)

The volume |Q| of the region  is thus given by the integral

by ba(x")

o] = [dx' [ dy'[bs(x',y") - asix',y")] (2.31b)

a; az(x')
where the integgand of course represents the result of the trivial
z'-integration.

The density function defining a uniform distribution of points inside
Q is
l/|Q|, for (x,v,z)eq

P(x,y,2)= (2.32)
0 , for (X,Y,Z)_tﬂ

To apply the generalized inversion method to generate random points ac-
cording to this P(x,y,z), we must evidently condition P(x,y,z) in the
manner of (2.21). This is not in general a trivial task, because of the
boundaries of 2. Thus, inserting (2.32) into (2.22), we find for the
one-variable densityv functions

~ - ba(x)
P(x) = |27 | dy'lbs(x,y') - as(x,y")], aisxgh) (2.33a)
a2 (x}

~1-Eq. (2.31a) is to be read "Q is the set of all points (x,y,z) for which

a1€x<by, az2(x)<ysba(x) and as(x,y)<z<b, (x,y)".




bz}x)
P(ylx) = [bs(x,y) - as(x,y)] dy'[b3(x,y") - as(x,y")],
az (x)
az (x)<ysb2 (x) (2.33b)
P(z|x,y) = 1/[bs(x,y) - as(x,y)], a3(x,y)sz<bs(x,y) (2.33¢)

The corresponding one-variable distribution functions in (2.23) are
therefore given by
X bz (x")

F(x) = |Q]F [dax'" [ dy'[bs(x',y") - as(x',y")], aisxsbr  (2.34a)
ay az(x")

y b2 (x)
F(ylx) = [ dy'[bs(x,y") - a:(x,yD1/ [ dy’

az(x) az(x)

[b3(x,y') - asz(x,¥y")], a2(x)<y<ba(x) (2.34Db)

F(z|x,y) = [z - asx,0] /bs(x,y) - asz, ],

az(x,y)sz<bs(x,y) (2.34¢)

Thus, to generate a random point uniformly inside & by the generalized
inversion method, we must insert the above distribution functions into

(2.29), and solve successively for X ¥y and z Depending upon the

i

siiape of @ --i.e., depending upon the boundary funciions u2(x), b2(x),

az(x,y), ba(x,y)--this may be a very easy task or a very difficult task.

The easiest case is realized when Q is a "box", with the boundary

37




L e e TSRS

functions a, and bi all constants. In this case (2.31b) gives
|2] = (b1-a1) (b2-a2) (b3-a3)

The one-variable density functions in (2.33) become

P(x) = 1/{m-a1), a1sxsh;
P(y|x) = 1/(bz-a2), az<yshe

P(z|x,y) = 1/(bs-a3), assz<bs
and the corresponding one-variable distribution functions in (2.34) become

F(x) = (x-e1)/(b1-a1), 218x<hy
F(y|x) = (y-a2)/(b2-a2), az2€ysh
F(z|x,y) = (z-a3)/(b3-a3), as€z<hs
Inserting these distribution functions into (2.29) and inverting, we

obtain the following algorithm for generating a random point (xi,yi,zi)

from a uniform distribution inside the box {a;sx<bp,a2€y<b2,a 3<z<bal}:

Xi = a3, + (b1—a1)1.‘1i (2.35a)
yi = a; + (bz—az)rZi (2.35b)
z, = a3 + (ba—ag)r3i (2.35¢)

Here, Ty Toy and r, are independent random numbers from a uniform

i
distribution in the unit interval. Egqs. (2.35) are precisely what-

g



we should expect on the basis of the rule in (2.10c): we simply generate
each coordinate independently from a uniform distributicn along the cor-

responding edge of the box.
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When the boundary functions a, and bi are not all constants, so that
{1 is not a box, then the one-dimensional distribution functions must be
ﬁ i calculated according to (2.34), inserted into (2.29), and inverted. It is

important to realize that, in this general case, one will not obtain

equations having the simple form (2.35). That is, although (2.34c) and
(2.29c) will indeed produce an equation like (2.35c) with a3 and b3
replaced by ag(xi,yi) and b3(xi’yi)’ (2.34b) and (2.29b) will not produce
an equation like (2.35b) with a, and b, replaced by az(xi) and bg(xi),

3 and (2.34a) and (2.29a) will not produce (2.35a). To put it differently,
although P(z|x,y) in (2.33c) indeed describes, for fixed x and y, a

uniform distribution in z, P(ylx) in (2.33b) does not describe, for fixed x,

a uniform distribution in y, and P(x) in (2.33a) does not describe a
uniform distribution in x. The point here is that the correct version
of the algorithm in (2.35) for non-box regions {) cannot be easily

intuited a priori.

It is in principle always possible %o apply the generalizcd in-
version methcd to generate random points aniformly inside a given region
F 7, provided 2 is defined by means of btoundary functions a, and bi as
in (2.31a). In practice, though, the calculation of the one-variable
distribution functions in (2.34) and their subsequent inversion often

prove to be prohibitively difficult. Furthermore, it often happens
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that the volume @ is not defined through boundary functions of the

kinds in (2.3la), but rather through one or more inequalities between
various functions of the coordinates. In such situations, it is some-
times feasible to proceed in the following alternate way: Choose a
box-like region I which completely encloses the given region 2. Generate
random points uniformly inside I according to the procedure described

in connection with (2.35), but keep only those points which happen to
also lie inside 1. Clearly, the subset of "kept'" points will be dis-
tributed randomly and uniformly inside 2. This simple procedure has the
advantage that one can apply it without having to calculate and invert
the various one-dimensional distribution functions. Furthermore, one

does not even need to know the boundary functions a, and bi in (2.31a);

i
one only needs to be able to decide whether or not a given point in I
lies inside Q. The only possible drawback to this method is its ef-
ficiency. Clearly, the approximate fraction of uniformly distributed
random points inside Z which also lie inside Q will be the ratio of the
volumes, |Q|/|L|. If this ratio is very small--i.e., if Q is so shaped
that its volume is much smaller than the smallest box I which can be
fitted around --then this method for generating random points uni-
formly inside  will be correspondingly inefficient.

We shall now illustrate the foregoing two procedures for generating
random points uniformly inside non-box regions by considering the fol-
lowing two-dimensional problem: Let 2 be the region in the xy-plane

which is bounded by the x-axis, the line x=1, and the curve y=xn,

where n is a fixed, positive integer. A sketch of Q is shown in Fig. 4.
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Suppose we wish to generate random points (x ) uniformly inside .

1274
One way of proceeding would be to generate random points uni-

formly inside the unit square Z, and then keep only those points which

happen to fall inside . Letting Ty and Ty, be two independent random

numbers from a unifor. iistribution in the unit interval, the generating

algorithm is evidently

X =rli

Yy =Ty (2.36)
n

keep only if yisxi

Since the volume of the unit square is |Z|=1 and the volume of Q is

1 X" n 1
2] = [axfay = [x'dx = -= (2.37)
o o

O =~

then the efficiency of this method is
l2]/]2] = 2 (2.38)
n+l <

For small values of n this method would nct be too bad; e.g., for n=1,
Q2 would be a simple triangle, and half the points generated inside X
would be kept. However, if n is very large this method would evidently
not be satisfactory. Let us see how we could generate the points inside
Q2 directly using the generalized inversion method.

We wish to generate random points (x ) according to the density

174
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17|}, for (x,y)eQ

P = o . for Gy (2.39)

where 2} is the volume shown in Fig. 4, and |Q| is given by (2.37).

We first '"condition” this density function ia the form
P(x,y) = P(x)P(y|x) (2.40)

The one-variable density functions P(x) and P(ylx) are given by

[cf. (2.22)]
Xl'l
P(x) = [P(x,y")dy' = (n#1)x", Ogxgl (2.41a)
[}
Pyl = ol < ™, ocye” (2.41b)
JP(x,y")dy"
(o]

and the corresponding one-variable distribution functions are given by
[cf. (2.23)]

X
IP(x')dx’ = xn+l, 0

o

x<1 (2.42a)

F(x)

"N

y _ .
[p(y'[x)dy' = x "y,  Osysx (2.42b)
(o)

i

F(y|x)

Then, with r,, and r,., two independent random r.mc=rs from a uniform

1i 21

distribution in the unit interval, we put in accordance with (2.29),

= = Gt 1 D
i F(xi) and r i F(yilxi), and solve s3fhessive.y for Xy and Y4 The

k3 2

result is easily found to be
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(2.43)

Yi T XiToy

Thus, (2.43) is the algorithm whereby one directly generates random
points uniformly inside the region {, shown in Fig. 4, for any fixed
value of n.

It is tempting to try to "improve'" the algorithm (2.36) by modifying

its second equation to read

This would amount to first generating a random coordinate Xy uniformly
between 0 and 1, and then a random coordinate Yy uniformly between O

and xin (rather than between 0 and 1). Clearly this would 2 ‘tomatically
satisfy the inequality in (2.36), so that ever' point (xi’yi) generated
in this way would lie inside Q. The trouble with this procedure is that

the points (x ) generated in this way would not cover  uniformly.

19§
To see this, we need only observe that this method would produce as many
points with xi<1/? as with xi>1/2, implying that the portion of Q in Fig. 4
to the left of the line x=1/2 would contain just as many points as the
portion of © to the right of this line--a situation clearly inconsistent
with a uniform distribution. The only way of first generating an

xi-value and then generating a yi-value such that (xi,yi) is always a

random point from a uniform distribution inside {2, is to proceed

according to the algorithm (2.43).
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A more elaborate example cf using the generalized inversion method
to generate random points uniformly inside a given region will be

presented in Section 2-10.

- T ST S e

2-7. The Generalized Rejection Method

In the preceding section we showed how one could generate random
points uniformly inside a given region ). Having this ability, it is
possible to generate random points inside 7 according to any prescribed
density function P(x,y,z) by a straightforward generalization of the

one-dimensional rejection method:

Generalized Rejection Method: We are given a density function

P(x,y,z) which vanishes everywhere outside a specified region 2, and

which is bounded by a number B inside {2. We require a set of random

points {(x!,v',z!)} distributed uniformly over &, and also an in-
IR R & y

dependent set of random numbers {ri} distributed uniformly over the
unit interval. To generate a random point (xi,yi,zi) according to
the density function P(x,y,z), draw successive pairs of random

poinis r, and (x%,yi,zi) until the inequality

1 1 1
P(xi,yi,zi)/B 2 ry (2.44)

is found to be satisfied, whereupon take (x,,v,,z,)=(x!,y!,z]).
i’71774 i*7i’i
The proof for this method is a straightforward generalization of the

proof in on: dimension, which is given in Appendix A. As with the one-

dimensional case, it should be noted that it is only necessary to know
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P(x,y,z) and its upper bound B to within a constant factor, because
only their ratio is used. In any case, the efficiency of this method
is [cf. (2.12)]}

IIIQP(X’Y:Z)dXdeZ
) B+ 19

(2.45)

so it is desirable to take B equal to the least upper bound P(max) of
P(x,y,z) in Q.

It may be noted that the alternate technique mentioned in the
previous section for generating random points uniformly in a non-box
region {)--namely, by picking from a uniform distribution inside an
enclosing box I all those points which happen to fall inside Q--is

really an application of the generalized rejection method. Thus, we

1

start with a set of random points ((xi

,yi,zi)} distributed uniformly
inside a box I which encloses the given region £ , and we proceed

to construct a set {(xi,yi,zi)} distributed according to the density
function P(x,y,z) in (2.32). The least upper bound for P(x,y,z) in
(2.32) is evidently B = 1/|Q|, so the ratio on the left of (2.44) will

be 1 if (x]

| L L} ] L
i’yi’zi) £ Q and 0 if (xi,yi,zi) ¢ @. In the former case

the inequality in (2.44) will always be satisfied and the trial point
will be kept, while in the latter case the inequality in (2.44) will
never be satisfied and the trial point will be rejected. In this case

there is never any need to draw a random number r the acceptance of

i
the trial point depends ultimately only on whether it lies inside .

The efficiency of this method is calculated from (2.45) by replacing
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> by I, inserting for P(x,y,z) the function in (2.32) and putting

B=1/|2|; thus,

1 (o1

E= wmaniEr T 1T

just as we expect.

If the set {(xi,yi,zi)} used in the generalized rejection method is
distributed over Q according to a (not necessarily uniform) density function
ﬁ(x,y,z), then the density function of the set {(xi,yi,zi)} constructed in
accordance with the selection rule (2.44) would be CE(x,y,z)P(x,y,z), C
being the appropriate normalization constant. This follows from a straight-
forward extension to three dimensions of the arguments presented in

Appendix A,

2-8. The Contraction Method

- We have discussed two general ways of generating random points according
to a prescribed probability deusity function--namely, the inversion method
and the rejection method. We shall now describe one more method, which we
shall call the "contraction method', for accomplishin, this task. This
nethod is applicable whenever the given density function can be regarded
as a contracted density function of some higher dimensional disiribu-

tion which can be easily handled. In its simplest form, the contraction

method can be described as follows:

Contraction Method: It is desired to generate a set of random points

{xi} according to a given density function P(x), but it is found that

neither the inversion nor rejection method offers an efficient way




B

of doing this. However, it is discovered that there exists a

density function P(x,y) for which P(x) is the y-contracted density

function:
P(x) = [P(x,y")dy" (2.46)

It further happens that, by using either the generalized inversion
method or the generalized rejection method, it is possible to
generate random pairs {(xi,yi)} according to P(x,y) rapidly and
efficiently. Then, by generating such a set {(xi,yi)} and simply
ignoring the y-coordinates, we have by (2.46) a set of x-coordinates

{xi} which are randomly distributed according to P(x).

We may illustrate the potential usefulness of the contraction
generating method by considering the following example. Suppose it is
desired to generate a set of random numbers {yi} distributed according

to the density function

(m+)[1 - y2'™),  for 0<y<l
P(y) = (2.47)
0, for y<0 and y>1

where n is some fixed, large integer. For the inversion method, we can

calculate the distribution function easily enough,

y
F(y) = [P(y")dy' = y{1l + n - nyl/n] (2.48)
o]

but we observe that the equation r =F(yi) can be inverted, as required

i
by (2.9), only numerically. The rejection method would entail picking

a pair of random numbers Yy and r, uniformly in the unit interval, aud

i
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[noting that the least upper bound on P{y) is B=(n+l)] taking yi to be a

member of the desired set {yi} if and only if [cf. (2.11)]

P(y;)/B =1 - yil/“ >, (2.49)

However, the efficiency of this method is easily calculated from (2.12)
to be E=1/(n+l), which is very low uader the given specification that
n is large.

We now astutely observe that the density function P(y) given in
(2.47) coincides with the x-contracted density function of the quantity

P(x,y) defined in (2.39),(2.37) and Fig. 4:+

- 1
P(y) = [P(x',y)dx' = [(nHl)dx' = (a+l)[1-y /™

1
yt/m

]

Now we have already found that the algorithm in (2.43) offers a very ef-
ficient way of generating random points {(xi’yi)} according to P(x,y), even
if n is very large. Therefore, by first generating a number X; according to
the first of Fqs. (2.43), and then using this xi-value to generate a number
¥y according to the second of Eqs. (2.43), we will have thereby generated

a yi—value according to the density function in (2.47). Of course, we have

had to use two random numbers to do this, but this is still a more efficient

oo
'Notice in passing that the functional forms of P(y) in (2.47) and P(x)
in (2.4la) are indeed quite different, even though both are contracted

from the same two-dimensional density function P(x,y).
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method for large n than is offered by either the inversion or rejection
methods.

Variations on the contraction method are seen to be virtually
limitless. For example, one might find that it is a simple matter
to generate a set of random points {(xi,yi,zi)} according to a density
function P(x,y,z) by applving the generalized inversion method, con-
ditioning P(x,y,z) as P(x)'P(y|x)'P(z|x,y) {cf. (2.29)]. Then, by ig-
noring the x- and y- coordinates we have available a set of random

numbers {zi} distributed according to the density function

P(z) = [dx'[dy'P(x',y',z) (2.50a)

and by ignoring the x-coordinates have available a set of random points

{(yi,zi)} distributed according to the density function

P(y,2) = Tﬁx'P(x',y,z) (2.50Db)

- 00

and so on.

We thus have at our disposal a variety of techniques which can be
used, in conjunction with a given set of random numbers {ri} distributed
uniformly in the unit interval,to construct a set of random points {X.
distributed according to any prescribed density function P(X). 1In tt:
next chapter we shall see how to use such sets of points to numerically
estimate definite integrals. We conclude the present chapter by con-
sidering two examples, of interest in both statistics and statistical
mechanics, which illustrate some cf the ways in which one can utilize

the random number generating techniques developed in this chapter.
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2-9 An Example: The Weighted Gaussian

Consider the problem of generating a set of random numbers {xi}
distributed according to the density function
A(n,a) xnexp(~ax2), x>0

P(x3n,a) = (2.51a)
0 s x<0

where n is any fixed non-negative integer and a is any fixed positive
number. The constant A(n,a) is defined so that P(x;n,a) satisfies the

normalization condition (2.3); using standard integral tables one finds

2\/?? , n=0

2 2n/2a(n+l)/2
VT 1°3+5+++(n-1) °’

2a(“+1)/%/19§l>! ,  n=1,3,5,...

A(n,a) = n-=2,4,6,... (2.51b)

For n=0,we have P(x;O,a)=2/§7?exp(-ax2), x20, which is often referred to
as the Gaussian curve. [More precisely, the Gaussian curve is usually
defined as /57ﬁéxp(—ax?) on the entire x-axis, so our P(x;0,a) is
really just half of the Gaussian curve.] By including the factor xn,
n>0, we obtain what we shall term a 'weighted Gaussian'. It is easy
to show that P(x;n,a) assumes its maximum value at the point x=/g7§;;
furthermore, for n»1,P(x;p,a) tends to O as x>0, and for all n,P(x;n,a)
tends to 0 as x>,

1f we wish to generate a set of random numbers {xi} according to
P(x;n,a) by the ordinary inversion method, we must first calculate the

distribution function
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x -
F(x3n,a) = JP(x';n,a)dx’
0o

This caiculation is rather lengthy for arbitrary n, and is found to

yield
erf (vax) » n=0
n/2 2, V-1
2 —(2ax7)
F(x;n,a) =] erf(vax) v Yax exp(—axz)vz1 Te3500+(2V-1), n=2,4,...(2.52)
(n-1)/2 24V
1 - exp(-ax?) z (aﬁ!) , n=1,3,...
v=0
where erf(x) is the so-called "error function", *
9 X
erf(x) =% [exp(-t?)dt, x20 (2.53)
)

which is tabulated in many mathematical handbooks. It is clear from (2.52)
that the task of inverting F(x;n,a) is in general not a trivial matter.
This is particularly true for n=0,2,4,..., since erf(x) can be calculated
and inverted only by numerical methods. There is in fact only one case for
which F(x,n,a) can be easily handled. This is the case n=1, for the

equation

= * = - - 2
r, F(xi,l,a) 1 - exp( axi)

can be easily inverted to obtain

X §1°8(1-i1) (2.54a)

as the algorithm whereby one constructs from a set of random numbers
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{ri} distributed unifermly in the unit interval, a set of random numbers

{xi} distributed according to the density function

Ao

B
g

e

P(x;1,a) = 2ax exp(-ax?), x30 (2.54b)

A straightforward application of the rejection method to P(x;n,a)
is not very satisfa:tory because P(x;n,a) is non-zero over an infinite
a8 interval. Of course, we might simply put P(x;n,a)=0 for all x larger
than some large but finite value X, but this procedure is rather arbi-
trary. Moreover, the efficiency of the rejection method is inversely
proportional to the length of the interval (a,b)=(0,xo) over which the
initial uniform set {xi} is taken [see (2.12)], so the larger we take
X, the more inefficient the rejection method becomes.

We shall now derive two different methods for efficiently generating

random numbers {xi} according to the n=0 density funrction,

P(x;0,a) = 2/575‘exp(-ax2), x20 (2.55)

We shall then show how one can easily construct, from a given set of
: random numbers {xi} distributed according to P(x;0,a), another set of
i random numbers {oi} distributed according to P(p;n,a) for any integer
n>0,

The first method for generating random numbers {xi} according to
P(x;0,a4) essentially consists of a combination of tLe contraction and
inversion methods, coupled with a suitable transformation of variables.

Consider the auxiliary two-dimensional density function P(x,v), defined hy
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P(x,y) = P(x;0,a)°P(y;0,a)

i 4%-exp(-a[x2+y2]), for x,y30 (2.56)
0 o for x<0 or y<0
Clearly, the contracted density functions P(x) and P(y) are

P(x) = TP(x,y')dy' = P(x;0,a) (2.57a)
o

P(y) = ?P(x'.y)dx' = P(y;0,a) (2.57b)
o

so that if we can generate random pairs {(x )} according to P(x,y)

171
then the separate coordinate sets {xi} and {yi} will each be a set of
random numbers distributed according to the desired density function.

Moreover, since

P(x;0,a) = P(x) (2.58a)

P(x,y)/P(x)

i

P(x|y)

and

P(x,y)/P(y) = P(y;0,a) = P(y) (2.58b)

P(y|x)

then for any random point (xi,yi), a knowledge of X tells us nothing about
the possible values of y.; in other words, the sets {xi} and {yi} derived

from the set {(x )} are statistically independent of each other. Now,

174
how can we obtain a set {(xi,yi)} distributed according to P(x,y) in

(2.56)? Consider the transformation of variables (x,y)>(p,0) defined by

X = pcosb (2.59)
y = psinf

Since 3(x,y)/d(p,9)=p, then a distribution of random pairs {(xi,yi)}

with the density function P(x,y) in (2.56) corresponds, under the
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transformation (2.53), to a distribution of random pairs {(ci,Gi)} with

density function [ef. (2.25)-(2.28)]

B(p,9) = P(x,y);%%gfg% = 4%3 exp (-ap?) (2.60)

where O¢p<® and 0s<6<m/2. Conditioning P(c,”) in the form P(p)P(3l0),

we find
/2
P(p) = {B(p,5')d8" = 2ap exp(-ap?) = P(p;l,a) (2.61a)
C
B(8|p) = P(p,9)/P(p) = 1/(n/2) (2.61b)

Now, we have already seen how to generate random numbers Py according to
P(p;1,a) [cf. (2.54)]; furthermore, i+ is trivial to generate random numbers
g; in (0,m/2) according to the density tunction in (2.61b) [cf. (2.19)].
Hence, it is a simple matter to generate random pairs {(oi,@i)} according
to P(c,0). Our algorithm for generating random numbers {xi} according

to P(x;0,a) is therefore as follows: Letting £y, and Ty, denote two random

numbers from a uniform distribution in the unit interval, calculate

[cf. (2.54) and (2.10)]

Ao (1)[2i (2.62b)

Then calculate, in accordance with (2.59),
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x; = picose1 (2.63a)

yi = Qi81nei (2.63b)

The random pairs {(x )} generated in this way will evidently be

1°Y4
distributed according to the density function P(x,y) in (2.56). There-
fore, by (2.57), the set {xi} will be distributed according to the density
function P(x;0,a) and the set {yi} will be distributed according to the
density function P(y;0,a). Moreover, because of (2.58) the sets {xi} and
{yi} are statistically independent, so that the numbers X; and Yy calculated
from the same p, and 6, in (2.63) can be used successively without intro-
ducing unwanted correlations. Note that this generating method, which
operationally involves nothing more than the formulae in (2.62) and (2.63),
is actually 100% efficient, in that the two random numbers rli and Ty
from a uniform distribution in the unit interval actually produce two random
numbers distributed according to the desired density function P(x;0,a).
[Note also that the quantity (l-rli) in (2.62a) can be replaced by Ty
since both are uniformly distributed random numbers in the unit interval.]
We next consider an alternate method of generating random numbers
{xi} according to the density function P(x;0,a). This method consists of
first introducing a change of variables x>y which transforms the infinite
range O<x<» into the finite range 0<y<l, and then applying to the trans-

formed density function the one-dimensional rejection technique. [This

method is adapted from Fluendy, Ref. 2, p. 77.] The x*y transformation
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used here is

-/ T _
y=e 2 or x-= -v-ﬁ- logy (2.64)

Under this transformation a set of random numbers {xi} distributed over

the interval 0¢x<~ according to P(x;0,a) corresponds to a set of random

;
3
4
*_1
g

RS

numbers {yi} distributed over the interval 0<y<l according to the density

; function [see (2.5)~ (2.7)]
dx
P = P(x;0,a) [5—
(v) = B(x;0,a) |
Using (2.64) and (2.55), we easily find

P(v) = 7= ylexp(-log?y),  0<yl (2.65)

It is not difficult to show that P(y) assumes its maximum value at

y=1//e, and that this maximum value is

B = 2 el/ (2.66)
Hence, w2 can generate a random yi-value according to P(y) by repetitively
drawing pairs of random numbers yi and ry from a uniform distribution in

the unit interval until the inequality [cf. (2.11)]

P(yi)/B LR

or equivalently
1 2 1
(L + 1o8y}) < 108() (2.67)

2 1
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is found to be satisfied. We then take yi=yi, and put

1
xi = -V’i; logyi (2.68)

in accordance with the transformation (2.64). The efficiency of this
method—i.e., the fraction of the yi-values which lead to acceptable

yi—values, and hence acceptable x,-values—is found from (2.12) to be

i
By _1_ /A .
E= e =~ 3o - 0-6¢ (2.69)

This efficiency is quite satisfactory; it implies that roughly 2 out
of every 3 yi—values tried will be accepted.

We thus have available two methods of rapidly and efficiently gener-
ating random numbers {xi} according to the density function P(x;0,a).
We shall now show how one may use random numbers distributed according
to P(x;0,a) to construct random numbers distributed according to P(x;n,a)
for any integer n>0. The method is operationally quite simple: If
X)goXpgreeeoXyyy 4 @T€ n+l numbers drawn at random from a set {xi} whose

density function is P(x;0,a), then

= 7 .2 2
Py = ‘/xliﬂ21+"'+xn+l,i (2.70)

will be a random element from a set {pi} whose density function is P(p;n,a).
To prove the last statement, consider the (n+l)-dimensional density

function

n+l
P(X] 1X2y 00 ’xn+1) = —rTP(xj ;0,8)
J=t

afy? 2 -
= exp ( a[x1+...xn+1]), if all xiZO

2n+1’a (n+1)/2
, ( ) (2.71)

o , if any x1<0
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We may generate a random point (xli’XZi""’xn+1,i) according to this
density function merely by picking each component independently azcording
to the density function P(x;0,a); this follows because, as may be readily

seen from (2.71),

P(x1) = P(x1;0,a)

P(xz|x1) = P(x230,a)
P(x3|x1,%2) = P(x3;0,3)

etc.

Consider next the transformation of variables (x1,xz,...,xn+1)+(p,a1,az,.",un)
which corresponds to a change from the Cartesian respresentation of an
(n+1)-dimensional vector to a polar representation. Here, P is the "length"
of the n+l dimensional vector, while the ai's are certain angles or cosines

thereof. For example, for n=1 we have o1=0, with

X1 = pcost 2 _ 2 2 3(x1,%2) _
’ P x] + x2, 3(p,0) P

X2 = psind

and for n=2 we have o0)=cosf and 02=¢, with

x1 = psinbcos¢d
P 2 2 2 2 d(x1,X2,X3) 2
- =) <+ ————r =
X2 psinfsing }, p xi + x2 + x3, 3(0,cos0,0) P
X3 = pcosd

In general, the transformation we consider has the properties that

2 _ 2 2 2
p® = X + x5 + ...* X 41 (2.72a)

and
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+1
n = pn

3(o,a1,-.-van)

0(X1,X2,.00,X

(2.72b)

From (2.25)~(2.28) it follows that a set of random (n+l)-tuples
{(xli’x21""’xn+l,i)} distributed according to the density function
P(xl,xz,...,xn+1) corresponds to a set of random (n+l)-tuples

{(pi,ali,...,uni)} distributed according to the density function

(X, 43Xy eoe X 1)
_ 1°72° " n+l/ |
B(pyayseees@) = Plxyseeexpy,) 30,0 50000 ) |
+1 +1)/2 2.
= 2n (%)(n 1)/ exp(_aOZ)on ( 73)
=C(n,a)p exp(-ap?)
The fully contracted p-density function is therefore
B(p) = [doy...[da Blpsay,..uha)
= C'(n,a)p"exp(-ap?)
or a
P(p) = A(n,a)p exp(-ap?) = P(p;in,a) (2.74)
Here, the second equality follows from the fact that P(p,al,...,an) is

independent of each a, and the last equality follows by simply recognizing
that P(p) must in any case be correctly normalized. Hence, we have shown
that the quantity p defined in (2.72a) is distributed according to
P(p;n,a). This establishes the simple constructicn algorithm (2.70).
Actually, the algorithm (2.70) is merely a generalization of a
familiar result in statistical mechanics: For gas molecules in thermal

equilibrium, each Cartesian component v, of the molecular velocity'?

i
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is distributed according to the density function exp(-mvi/ZkT); con-
sequentiy the molecular §pggg_v-(v§+v§+v§)lp is distributed according
to v2exp(-mv?/2KkT).

In conclusion, we see that we may generate random numbers {xi}
according to the weighted Gaussian function P(x;n,a) in (2.51) either
by numerically inverting the distribution function F(xj;n,a) in (2.52),
or by first generating random numbers according to P(x;0,a) via either

(2.62)-(2.63) or (2.67)-(2.68) and then using (2.70).

2-10. An Example: Uniform Distribution of Non-overlapping Rods on a Line

Consider the problem of distributing N line segments or 'rods", each
of length a, randomly and uniformly inside the x-axis interval (0,L),

subject to the constraint that none of the rods overlap. We assume that

L > Na (2.75)

so that the interval (0,L) is indeed large enough to accommodate all the
rods.
One way of proceeding on this problem would be to scatter the rods

randomly, uniformly and independently inside the interval (0,L) until we

come by chance upon a configuration in which none of the rods overlap.
In this approach, we first draw N random numbers TysTgseeesTy from the
uniform distribution in the unit interval, and we tentatively 1locate

the center of rod k at
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_a - ~
x, =3+ (L a)rk. k=1,2,...,N (2.76a)

The resulting configuration x X,, 1s then accepted if it is found

19Xgr e es Xy

to satisfy the no=-overlap condition
ka-xj| > a, all k#j (2.76b)

If this condition is not satisfied then the -onfiguration is rejected [the

entire configuration, not just those x,'s which are found to violate (2.76b)],

k
and we must try again using a different set of random numbers rl,rz,...,rN
from the uniform distribution in the unit interval. This procedure is
feasible if it turns out that a reasonable fraction of the configura-

tions generated in (2.76a) actually satisfies (2.76b). As we shall prove

later [cf. (2.96)], this fraction is in fact given by

x_acceptable configurations _ (L = Na)N (2.76¢)
it trial configurations L -a/ *

For N=100, a=1 and L=200 this acceptance ratio is (100/199)10021.3x10-30,

which is clearly too small by any standard.

Since the simple rejection generating method just outlined is not
generally feasible, let us try to devise an algorithm based on the in-
version generating method. First, though, let us restate the problem in
a way which shows clearly that we are in fact trying to generate a "point"
randomly and uniformly inside a given '"region'.

Imagine the rods to be laid out on the x-axis in the interval (0,L)

in any non-overlapping configuration. Let the rods be numbered from




e

Rt o e

right to left, so that the nearest rod to the left of rod k is always

rod k+l, and let x, locate the center of rod k [see Fig. 5]. Now

k
regard the N variables xl,xz,...,xN as Cartesian coordinates in an N-
dimensional hyperspace. Any point in this hyperspace specifies through
the values of its coordinates a "configuration" of the rods; however,
not every point in this space will satisfy the requirements that the rods
be non-overlapping and that the rods be numbered in order from right to
left. Let §! be defined as the set of all points (xl,xz,...,xN) in the

N-dimensional configuration space which do satisfy these two requirements;

thﬁs, % is defined by [see Fig. 5]
(=2 ! - =
0oz *(xl,xz,...,xN)d xata<x <x ,-a, k 1,...,N} (2.77)

where X, and x are defined by

N+1

L + a/2 (2.78)

»
1"

I

Xyl -af2 (2.79)

With (2.78) and (2.79) the conditions x <xo-a and xN+l+a<xN in (2.77)

1

become respectively

X <L ~-af?2 and xy > a/2

which conditions evidently insure that rod 1 lies inside the right
boundary and rod N lies inside the left boundary [see Fig. 5].

Simply stated, our problem is to generate a point randomly and
uniformly inside the N-dimensional region ; that is, we wish to generate

a random N--tuple (xl,...,xv) according to the density function
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r=-a/2
L+a/

b

4 0
N+1

FIGURL 5. N non-overlapping rods of equal

length a on a line of length L.
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T FORE A B A

|Q|? if (xl,...,xN)GQ
P(xl,...,xN) = (2.80)
: 0, if (xl,...,xN)¢Q
where |Q| is the volume of the region . Our procedure will be to use

the generalized inversion method as described in Sections 2-5 and 2-6.

For this we shall first need to conduct a detailed analvsis of the mathe-

matical properties of the region .

Consider first the variable Xye From ¥Fig. 5 it is clear that the

minimum possible value for x, is a/2Zx ,,+a; the maximum possible value

N N+1

for X, occurs when the other (N-1) rods are jammed against the right

wall, and is L-(N—l)a-a/ZELN. For any given Xy in the interval (x +a,LN),

N+1

the minimum possible value for x is xN+a; the maximum possible value

N-1
for Xy_y occurs when the remaining (N-2) rods are jammed against the
right wall, and is L—(N—Z)a-a/ZELN_l. Continuing with this line of

reasoning, we see that the volume  defined in (2.77) can also be specified

in the following way:

Q= {(xl,...,xN)“ X T8 <% <L, kel N (2.81)
where the constants Lk are given by
Lk L - (k-1)a-a/2, k=1,2,...,N+1 (2.82)
or equivalently by the recursive formulae
Ly =L -a/2 (2.83a)
Lk+l = Lk ~-a, k=1,2,...,N (2.83b)




———

[We allow (2.82) and (2.83) to define the quantity L which, although

N+1
not appearing in (2.81), will be convenient for later formulae.]

The advantage of (2.81) over (2.77) is that it "orders" the coordinaires
in the manner of (2.31a), thereby allowing us to employ the techniques

outlined in Sec. 2-6.

The volume IQI is given by the N-fold integral

Ly Iy L
2] = f . dx f+ dxy ...[+ dx; (2.84)
XN+1 a XN a x2 a

The unconditioned density function for x_ is given by [cf. (2.22a),

N
(2.80) and (2.81)]
et Iy L o
P(XN) = J+ dxn_1 f . de—Z"' f+ dxliﬂl (2.85a)
xta xypte x,%a

The density function for xk conditioned on xk+1, Xpgor oo Xy for

2<k¢N-1 is given by [cf. (2.22b), (2.80), (2.81)]

Le-1 L o
f dx ...f dx |Q|
P(x, | ) = adta B (2.85b)
(K 1 Xpegg e o¥py) = L, L, Iy B v
| . dx, f+ dxk_l...f+ dxl|Q|
Xk+1 a Xk a X2 a

And the density function for Xy conditioned on xz,xa,...,xN is given by

[cf. (2.22¢), (2.80) and (2.81)]
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-1
ol — (2.85¢)

P(xllxz,...,xN) = L1
f dx

+a
)

In order to calculate the foregoing quantities, it is convenient to introduce

the auxiliary quantities VO’ Vl, 500G VN defined by

i} (2.86a)
Vg =1
Ly L Ly
v s odx [ ax .. [ odxp, o k=l,2,.00N (2.86b)
xk+1+a xk+a x2+a

In terms of the quantities Vk we have from (2.84)
= (2.87)
o] = vy

and from (2.85a) - (2.85c)

P(xy |%pyseeenXy) = Vi Vs k=1,2,..00N (2.88)

provided, for k=N, P(xklxk+l""’xN) is understood to represent P(xN).

Next we shall derive an explicit formula for V, so that the important

k
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